Effective Extraction Method for the Determination of

Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Samples

Experiment, Results and Discussions

Part I : Determination of PAHs in ethanolic samples Introduction Part I/I : Qualitative analysis (synchronous scanning technique) PAHs Determination methods Past J/II: Quantitative analysis Determination methods Past J/ICRecovery of extraction methods Part J/ICRecovery of extraction methods

Extraction onethods

- Microwave extraction
- Sonication
- Soxhlet extraction

Objectives

To study the optimum conditions for extraction of PAHs from sediment samples between <u>microwave extraction</u> and <u>sonication</u>

2 To compare efficiency of extraction methods for extraction of PAHs from sediment samples between <u>microwave extraction, sonication</u> and <u>Soxhlet extraction</u>

3 To develop the spectrofluorometric method for qualitative and quantitative analysis of PAHs from extraction

NTROBUCTION

Polycyclic Aromatic Hydrocarbons (PAHs)

- PAHs consist of two or more fused benzene rings
- PAHs are produced naturally by combustion processes,

industrial processes and transport etc.

- PAHs are pollutants in environment
- PAHs can be polluted in many kinds of environmental samples

soil & sedimentriverplantrainground water

 $\bigstar \bigstar \bigstar \bigstar \bigstar \bigstar \bigstar$

Toxicity of PAHs

Chronic health effect and carcinogenicity

High bioaccumulation potential

Low removal efficiency in treatment process

Method for determination of PAHs in samples

1. Spectrofluorometric method

Method for extraction

Microwave Extraction

Soxhlet Extraction

Sonication

THE ELECTROMAGNETIC SPECTRUM

MolecularOuter-shellInner-shellvibrationelectronelectron

Ionic Conduction

2. Soxhlet Extraction

3. Ultrasonic Extraction: Sonication

Operation frequency 30-40 KHz

Determination of PAHs in ethanolic samples by

 $\mathbf{18}$

Synchronous Flugrescence Spectroscopic Technique: The Tool for Rapid Identification

Songsasen, A. et al., Kasetsart J., 2002, 36, 301-311.

RESULTS EXPERIENT DISCUSSION

Synthetic mixture of benzo[k]fluoranthene, fluorene and truxene

The synchronous spectrum of benzo[k]fluoranthene, carbazole, chrysene, anthracene, acenaphthene and indeno[1,2,3,cd]pyrene at $\Delta \lambda = 6 \text{ nm}$

The synchronous spectrum of benzo[k]fluoranthene, carbazole, chrysene, anthracene, acenaphthene and indeno[1,2,3,cd]pyrene at $\Delta \lambda = 20 \text{ nm}$

The synchronous spectrum of benzo[k]fluoranthene, carbazole, chrysene, anthracene, acenaphthene and indeno[1,2,3,cd]pyrene at $\Delta \lambda = 95$ nm

The synchronous spectrum of benzo[k]fluoranthene, carbazole, chrysene, anthracene, acenaphthene and indeno[1,2,3,cd]pyrene at $\Delta \lambda = 110 \text{ nm}$

RESULTS EXPERIENT DISCUSSION

Quantitative Analysis by Spectrofluorometric Method

- Calibration graph : range 0.005-0.040 ppm
- Scanning : Excitation wavelength (Ex), Emission wavelength (Em)

	Ex (nm)	Em (nm)
chrvsene	267	380
carbazole	233	356
acenaphthene	227	321
indeno(1,2,3-cd)pyrene	250	510
benzo(k)fluoranthene	307	407
anthracene	252	372

Calibration graph of chrysene

Limit of detection (LOD): $y - y_B = 3S_B$

Concentration. (ppm)	Intensity,y _i	[ŷ], y=4381x-0.012	[y _i -y^] ²
0.000	0.017	0.012	2.421X10 ⁻⁵
0.005	21.626	21.893	0.071
0.010	41.656	43.798	4.588
0.020	92.319	87.608	22.1948
0.030	129.370	131.418	4.194
0.040	174.975	175.228	0.064
			31 111

Miller, J. N., Statistics and chemometrics for analytical chemistry., 2000.

Concentration. (ppm)	Intensity,y _i	[ŷ], y=4381x-0.012	[y _i -ŷ] ²	
0.000	0.017	0.012	2.421X10 ⁻⁵	
0.005	21.626	21.893	0.071	
0.010	41.656	43.798	4.588	
0.020	92.319	87.608	22.1948	
0.030	129.370	131.418	4.194	
0.040	174.975	175.228	0.064	

3

Signal of LOD = a + 3Sy/x a = Intercept = -0.012 Sy/x = {sum (yi - \hat{y})² / n-2} ^{1/2}, n = 6 = 2.789 Signal of LOD = -0.012 + 3(2.789) = 8.355 Therefore: LOD = (8.355+0.012)/4381 = 0.0019 ppm

LOD of chrysene = 0.0019 ppm

PAHs	Limit of detection (LOD), ppm
chrysene carbazole acenaphthene indeno(1,2,3-cd)pyrene benzo(k)fluoranthene anthracene	0.0019 0.0021 0.0021 0.0017 0.0012 0.0024

Quantitative Analysis

	Amount of PAHs (mg/l), 1 st replicate	Amount of PAHs (mg/I), 2 nd replicate	Amount of PAHs (mg/I), 3 rd replicate	Average the amoun of PAHs (mg/l)	^t SD
chrysene	0.020	0.020	0.020	0.020	0.000
carbazole	0.021	0.021	0.020	0.021	5.773X10 ⁻⁴
acenaphthene	0.020	0.020	0.020	0.020	0.000
indeno[1,2,3-cd]pyrei	ne 0.136	0.134	0.135	0.135	0.001
benzo[k]fluoranthene	0.020	0.020	0.020	0.020	0.000
anthracene	0.031	0.030	0.031	0.031	5.773X10 ⁻⁴

32

Hypothesis testing

n < 30 : t-test

 $n \ge 30$: Z-test

	equation	R ²	Amount of PAHs, mg/l	real conc.
	Y = 24675X + 265.180	0.9995	0.011	
anthracene	Y = 24727X + 264.350	0.9996	0.010	0.010 🙁
	Y = 24709X + 262.770	0.9996	0.010	
indeno(1,2,3-cd)pyrene	Y = 1265.2X + 25.303	0.9997	0.020	
	Y = 1294.6X + 25.343	0.9996	0.020	0.020 💛
	Y = 1264.3X + 25.264	0.9987	0.021	
Optimization of extraction methods using the spiked sediment

RESULTS EXPERIMENT DISCUSSION

Amount of PAHs: mg/g (n=3) equivalent of chrysene Gaines et al. (2000) unwashed water ethanol 0.0045 0.0022 0.0045 0.0044 0.0021 0.0045 0.0044 0.0021 0.0045 0.0045 0.0044 0.0021 average 1.89X10⁻⁵ SD 2.15X10⁻⁵ 3.95X10⁻⁵ **RSD** 0.42% 0.49% 1.86% 0.0045+0.42% 0.0044+0.49% 0.0021<u>+</u>1.86%

Extraction Methods

Microwave Extraction

Soxhlet Extraction

(Conventional Method)

- Extraction Time

- Extraction Solvent
- Extraction Time
- Temperature of Irradiation

- Extraction Solvent

Sonication

- Extraction Time

Fixed: extraction solvent, temp. of irradiation = 80%BP(acetone) = 45° C

Extraction solvent & time for microwave extraction $CH_2CI_2 > 5$ minutes cyclohexane:acetone (3:2) > 15 minutes Boiling point CH₂Cl₂ 39.6°C cyclohexane 80.7°C 56.1°C acetone

The optimum condition for microwave extraction ⁵²			
	CH_2CI_2 5 minutes 100% BP.		
cyclohe	exane:acetone 15 minutes 140 % BP.		
Boiling point			
CH ₂ Cl ₂	39.6°C		
cyclohexane	<u>80.7°C</u>		
acetone	56.1°C		
acetone(140% BP.)	<u>79.0°C</u>		

Sonication

- Extraction Solvent : methanol, acetonitrile, acetone, dichloromethane, hexane:acetone (3:2)

5

cyclohexane:acetone (3:2)

- Extraction Time : 10, 20, 30, 40, 50 min
- Temperature of Irradiation : No
- Fixed : weight of synthetic sample ~0.25 g, extraction solvent = 20 ml

Extraction Solvent

Chipperfield, J. R., Non-aqueous solvents., oxford chemistry primers, 1998, 6-10.

60 The optimum condition for soxhlet extraction Type of solvent : CH₂Cl₂ Extraction time : 3 hr (24 hr)

Decomposition of PAHs on Soxhlet Extraction System

Recovery of the extraction methods

LGC : Laboratory of the Government Chemist

Chemical structure of PAHs, which were studied

Conditions of HPLC (EPA method 8310)

- Column : Chromopher PAHs
- Dimension : 250 X 4.6 mm
- Particle size : 5 μm
- >> Pore size : 120 A°
- Mobile phases : solvent A = water, solvent B = acetonitrile 50-100%B:0-25 min, 100%B:25-50 min
- Temperature : 25 °C
- Flow rate : 1 ml/min
- Photodiode array detector : 254 nm

Chromatogram of standard PAHs

% Recovery of extracted PAHs in CRM of each extraction method by optimized condition				
%Recovery: based on certified value of LGC6188 (average ± RSD)				
PAHs	PMAE	Soxhlet extraction	Sonication	
	cyclohexane:acetone (3:2)			
acenaphthene	75.59±0.71			
fluorene	107.52±11.01			
phenanthrene	94.91±4.99			
anthracene	112.89±2.50			
fluoranthene	75.62±1.30			
pyrene	94.35±0.67			
benzo(a)anthracene	89.25±1.17			
chrysene	102.95±2.01			
benzo(b)fluoranthene	124.11±5.91			
benzo(k)fluoranthene	176.71±1.55			
benzo(a)pyrene	91.59±0.21			
dibenzo(a,h)anthracene	78.22±2.69			
benzo(g,h,i)perylene	109.92±3.39			
indeno(1,2,3,cd)pyrene	87.81±1.50			

69 Amount of individual extracted PAHs by each extraction method using selected condition 2.0-Certified values ■ MW cyclohexane:acetone 1.8-MW CH2Cl2 Amount of extracted PAHs (mg kg⁻¹) Sox 24 hr 1.6 Sox 3 hr 1.4 Sonication hexane:acetone 1.2-1.0-0.8 0.6-0.4-0.2-0.0-BIRIE Blay - Blay - DBla, hyd - DBla, hyd - DBlay - Pho No Ant Blojf a st Blajh Ś Act Ľ, J.

Total amount of extracted PAHs by each extraction method using selected condition

CONCLUSION

The synchronous scanning fluorescence technique can be used as a rapid method for qualitative analysis of PAHs. Furthermore, PAHs in samples can also be quantitatively analyzed using external calibration and standard addition method.

The suitable conditions of microwave assisted extraction, sonication and Soxhlet extraction were studied and optimized. The certified reference material was extracted by using optimum condition of each extraction method for recovery testing.

The microwave technique was a good alternative to extract PAHs in soil and sediment mples.
The optimum condition of microwave were 20 ml of cyclohexane:acetone (3:2) at 140% of BP of acetone for 15 minutes. When compared to the certified value, the total %recovery obtained by PMAE was **96.55** %.

The main advantage of PMAE were the reduction of the volume of extraction solvent, the reduction of decomposition of extracted PAHs, the reduction in extraction time.

73

Test method for HPLC

76

Results

Amount of CRM extracts (mg/g) prepared by different procedures (n=3)

% Recovery of CRM extracts prepared by different procedures (n=3)

